Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile.
نویسندگان
چکیده
The amino acids glutamate (Glu) and glycine (Gly) trigger large, rapid rises in cytosolic Ca(2+) concentration and a concomitant rise in membrane potential (depolarization) in plants. The possibility that plant homologs of neuronal ionotropic glutamate receptors mediate these neuron-like ionic responses was tested in Arabidopsis (Arabidopsis thaliana) seedlings using a combination of Ca(2+) measurements, electrophysiology, and reverse genetics. The membrane depolarization triggered by Glu was greatly reduced or completely blocked in some conditions by mutations in GLR3.3, one of the 20 GLR genes in Arabidopsis. The same mutations completely blocked the associated rise in cytosolic Ca(2+). These results genetically demonstrate the participation of a glutamate receptor in the rapid ionic responses to an amino acid. The GLR3.3-independent component of the depolarization required Glu concentrations above 25 mum, did not display desensitization, and was strongly suppressed by increasing extracellular pH. It is suggested to result from H(+)-amino acid symport. Six amino acids commonly present in soils (Glu, Gly, alanine, serine, asparagine, and cysteine) as well as the tripeptide glutathione (gamma-glutamyl-cysteinyl-Gly) were found to be strong agonists of the GLR3.3-mediated responses. All other amino acids induced a small depolarization similar to the non-GLR, putative symporter component and in most cases evoked little or no Ca(2+) rise. From these results it may be concluded that sensing of six amino acids in the rhizosphere and perhaps extracellular peptides is coupled to Ca(2+) signaling through a GLR-dependent mechanism homologous to a fundamental component of neuronal signaling.
منابع مشابه
Spinally mediated analgesic interaction between γ-aminobutyric acid B receptor agonist and glutamate receptor antagonists in rats
Background. Many mechanisms are involved in pain transmission in the spinal cord. Therefore, combination of drugs acting on different kinds of mechanisms might be useful for analgesia. We investigated the interaction betweenγ-aminobutyric acid (GABA)B receptor agonist, baclofen, and N-methyl-D-aspartate (NMDA) receptor antagonist, AP-5, orα-amino-3-hydroxy-5-methylisoxazole-4-propionic acid ...
متن کاملDetection of a gravitropism phenotype in glutamate receptor-like 3.3 mutants of Arabidopsis thaliana using machine vision and computation.
Gene disruption frequently produces no phenotype in the model plant Arabidopsis thaliana, complicating studies of gene function. Functional redundancy between gene family members is one common explanation but inadequate detection methods could also be responsible. Here, newly developed methods for automated capture and processing of time series of images, followed by computational analysis empl...
متن کاملModulation of mEPSCs in olfactory bulb mitral cells by metabotropic glutamate receptors.
Olfactory bulb mitral cells express group I (mGluR1), group II (mGluR2), and group III (mGluR7 and mGluR8) metabotropic glutamate receptors. We examined the role of these mGluRs on excitatory synaptic transmission in cultured mitral cells with the use of whole cell patch-clamp recordings. The effects of group-selective mGluR agonists and antagonists were tested on alpha-amino-3-hydroxy-5-methyl...
متن کاملThe interactions between plasma membrane depolarization and glutamate receptor activation in the regulation of cytoplasmic free calcium in cultured cerebellar granule cells.
The complex modulation of cytoplasmic free calcium concentration ([Ca2+]c) in primary cultures of cerebellar granule cells in response to glutamate receptor agonists has been the subject of several contradictory reports. We here show that 3 components of the [Ca2+]c response can be distinguished: (1) Ca2+ entry through voltage-dependent Ca2+ channels, following KCl- or receptor-evoked depolariz...
متن کاملUnexpected inhibitory regulation of glutamate release from rat cerebrocortical nerve terminals by presynaptic 5-hydroxytryptamine-2A receptors.
Presynaptic 5-HT(2A) receptor modulation of glutamate release from rat cerebrocortical nerve terminals (synaptosomes) was investigated by using the 5-HT(2A/2C) receptor agonist (+/-)-1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI). DOI potently inhibited 4-aminopyridine (4AP)-evoked glutamate release. Involvement of presynaptic 5-HT(2A) receptors in this modulation of 4AP-evoked release was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 142 3 شماره
صفحات -
تاریخ انتشار 2006